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TO THE BOUNDARY AND BACK-A NUMERICAL STUDY 

S.  KARNI 
Department of Mathematics. University of Michigan, Ann Arbor, MI 48109, U.S.A. 

SUMMARY 
This study identifies the key parameters upon which energy absorption at artificial boundaries depends. A 
thorough numerical study is presented, of typical reflections from open computational boundaries, for 
problems governed by hyperbolic systems of equations. The emphasis is on systems, where it is often the 
combination of all boundary procedures that determine the quality of boundary treatment. We study 
dissipative numerical models which have so far not been analysed to the same extent as non-dissipative 
models and employ a Lax-Wendroff-type scheme as a prototype. While it is widely accepted that dissipative 
models tend to give fewer problems than non-dissipative ones, we show a variety of cases where substantial 
reflections do occur even in 1D and quasi-1D set-ups, where theory predicts best results. This can partly be 
explained by the vanishing of dissipation in the far field. Group velocity analysis, justifiable on the grounds of 
weak dissipation, predicts a pathological behaviour which is confirmed by numerical experiments. We 
demonstrate strong focusing of asymptotic errors generated at the artificial boundary. Internal reflections 
due to slowly expanding grids are shown for non-linear systems. The need for high-frequency boundary 
conditions naturally arises and combined low-high-frequency boundary recipes following Higdon, 
Vichnevetsky and Pariser are adapted to systems and tested. Partial cures are also discussed, mainly in terms 
of pointing out their theoretically limited potential. 
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INTRODUCTION 

In many CFD applications it is required to solve problems in unbounded physical domains. 
Numerical solutions, by their nature, cannot be obtained on infinite domains and the problem has 
first to be converted to a finite region. It is customary to truncate the domain by introducing an 
artificial boundary at some arbitrary finite distance. Well-posedness of the truncated problem 
usually requires boundary conditions (BCs) at the artificial boundary, which should ideally allow 
the outgoing waves to pass through without generating reflections. Far-field reflections are one of 
several mechanisms that effect the quality of solution. Indeed, reflections not only degrade time 
accuracy of transient solutions but also inhibit their convergence to steady states. In extreme cases 
they may render the solution unstable. Moreover, high energy absorption at the boundaries 
usually enables the bringing in of the outer boundaries, thereby reducing computational costs. 
Practical computations, however, are often much too envolved to pinpoint the precise way in 
which the BCs come into paly, and their effect usually gets absorbed and lost in the overall 
complexity of the calculation alongside other factors such as the numerical algorithm, geometrical 
complexity, artificial viscosity, etc. Whatever effect they may have on the solution in the interior, it 
is common wisdom that moving the boundaries further out will reduce it. This raises other 
complications such as large and usually highly stretched grids on which formal accuracy is often 
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lost and which slow down convergence to steady states. Better understanding of far-field reflection 
effects on the solution requires one to study the problem in isolation, by looking at model 
problems stripped of other computational complexities. 

The theory of characteristics provides a general framework for the imposition of absorbing BCs. 
For one-dimensional problems the theory leaves the freedom to specify as many BCs as there are 
incoming characteristics at the boundary. The outgoing part of the solution is predetermined by 
the initial data and is accordingly extrapolated from the interior of the domain. In multidimen- 
sional problems wave propagation is a lot more complex. One-dimensional characteristic analysis 
is still accepted as a general guideline but is no longer fully justifiable. Common absorbing 
boundary recipes often resort to 1D arguments normal to the boundary, which are strictly valid 
for waves travelling in that direction only. Asymptotic expansions lead to higher-order boundary 
operators which account for angular dependence.’ Other asymptotic arguments lead to boundary 
operators which become increasingly more accurate as the boundary approaches infinity.’ To 
accomplish high absorption at artificial boundaries, the outgoing part of the solution is identified 
and the extrapolation procedures are made to match its propagation pattern.’ -4  These 
procedures can broadly be divided into three categories and give rise to various sources of errors. 
An analytic BC based on an asymptotic argument generates errors of the order of the neglected 
terms. When replaced by a numerical approximation, further discretization errors are introduced. 
In the direct numerical approach the boundary operator is matched to the outgoing part of the 
numerical solution, usually to a particular (low) wave f r e q ~ e n c y . ~ . ~  Asymptotic expansions then 
determine its efficiency in absorbing neighbouring frequencies. This approach has the advantage 
that it can be targeted at absorbing non-physical parasitic modes which are ‘beyond the reach’ of 
any analytic approach,’.’ but is in general very sensitive to local numerical parameters. In the 
third and probably largest class are empirical BCs guided by practical experience. These many 
times prove at least as effective as the more theoretically sound BCs in the previous two c l a s~es .*~~  
To illuminate boundary reflection mechanisms, we have chosen to concentrate on 1D and quasi- 
1D test problems, cases where theory predicts best results. We show that even in these ‘best’ cases, 
widely held as easy cases, strong reflections may and do occur. Asymptotic boundary errors due to 
genuine multidimensionality are, on the whole, better appreciated and will tend to amplify the 
reflection mechanisms discussed in this work. We do not, however, feel that considering more 
involved problems will shed more light on the present study. On the contrary, inevitable 
additional complexities which are somewhat irrelevant to the present study will tend to obscure its 
simplicity and clarity. 

Discrete wave propagation in non-dissipative models has been analysed by various 
 author^.^. ‘‘-I2 Yet, many flow simulations use dissipative models which are widely accepted as 
‘better behaved’ and relatively problem-free (e.g. stability problems near shocks or near other 
boundaries). In this work we concentrate on the less studied class of dissipative models and use the 
Lax-Wendroff (LW) scheme as a popular prototype. In view of their popularity, it is of particular 
importance to realize that even dissipative models may lead to substantial far-field reflections, 
which, although classified as high-order effects, may reach intolerable levels. We show that this can 
partly be explained by the vanishing of dissipation in the far field. Group velocity analysis, though 
strictly applicable to non-dissipative models,’ becomes justifiable on the grounds of weak 
dissipation. lo* l4 It predicts a pathological behaviour known to exist with several non-dissipative 
models 10 - 12,15 and which tends to amplify far-field reflections. We identify the key numerical 
parameters upon which energy absorption at artificial boundaries depends and pinpoint the way 
in which they come into play. Our emphasis is on systems where it is often the combination of 
interior scheme and all boundary procedures that determines the quality of boundary treatment. 
We confirm the theoretical predictions by a thorough numerical investigation. We demonstrate 
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strong focusing of asymptotic errors generated at the artificial boundary. Internal reflections due 
to slowly varying grids are also shown. The need for high-frequency boundary recipes naturally 
arises and combined low-high-frequency BCs following Higdon5 and Vichnevetsky and Parker7 
are adapted to systems and tested. Partial cures are also discussed, mainly in terms of pointing out 
their theoretically limited potential. 

Finally, we mention that the pathological behaviour of the LW scheme as predicted by group 
velocity analysis is in fact not unique to this scheme. It applies to a much wider class of dissipative 
symmetric schemes of optimal accuracy and to symmetric Runge-Kutta-type schemes.' Upwind 
schemes, in this context, live up to their good reputation. Their inherent dissipation, although 
greatly reduced in the far field, is still sufficient to damp out the reflected waves.16 

DISCRETE WAVE PROPAGATION 

Discrete model, finite representation and spurious modes 

As a traditional model equation, consider the advection equation 

u, + au, = 0. (1) 
Although (1) is non-dispersive, discrete numerical models to approximate (1) always are. 
Depending on the numerical model, different wave frequencies will propagate at different speeds, 
causing the numerical solution to disperse and distort. While dispersion errors of well-resolved 
low frequencies are negligible, they become quite large for poorly resolved high frequency waves, 
leading to totally spurious non-physical behaviour. 

Let a grid be defined by xj=jh, tn=nk, where h and k are the grid spacings in the x- and 
t-directions. The discrete representation of a Fourier mode of wave number <, 

f(x) =f(jh) = eicjh = (eic*)j, (2) 
is determined by the parameter th, which assumes values in the range (- n, x ] .  A one-dimensional 
grid with N points admits N modes, the highest possible frequency of which corresponds to t h  = n 
and is of saw-tooth character. Since far-field flows tend to be smooth and slowly varying, 
computational grids often become increasingly coarser and sampling points become far apart. 
Consequently, an increasing number of modes tends to appear as high frequencies relative to the 
grid and dispersion errors become large and more acute. The main mechanism that can rescue the 
solution from being contaminated by large dispersion errors is dissipation. Unfortunately, the 
inherent dissipation of many schemes tends to diminish under far-field conditions as a result of the 
occurrence of small CFL numbers. 

Let (1) be approximated by the LW scheme 

(3) 
V V2 
(uJ+ 1 - ,[in- 1 ) + - (UJ- 1 - 2u; + u;+ 1 ), u n + l -  n 

j +-z 2 

with v = ak/h the CFL number. The discrete dispersion relation of (3) is obtained by substituting a 
travelling wave solution ur = exp (ionk -itjh) and reads 

eiWk= 1 +ivsin(<h)+v2 [cos(&)-l]. (4) 

It is non-linear complex relation between o and < corresponding to (3) being a dispersive and 
dissipative numerical model. Equation (4) is a quadratic relation between Z=eiWk and ~ = e ~ ~ ' :  

V V2 

2 2 2 = 1 -- (K - 1 - fc) + -( K - - 2 + K). 
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Any fixed frequency Z,=Z(w,) admits two spatial modes IC', 

which correspond to two distinct wave numbers r *. Only one of these wave numbers corresponds 
to a physically admissible mode. The other is an inevitable numerical by-product, which is a direct 
consequence of approximating the x-derivative term in (1) using three grid points. The admittance 
of spurious modes in high-order numerical models has mainly been recognized in non-dissipative 
models. Their occurrence in dissipative models is not generally regarded as troublesome because 
they do not usually trigger instabilities. Yet, while stability is a crucial prerequisite for a numerical 
solution to be possible, it is by no means an only requirement. Our numerical study shows that 
the admittance of spurious modes in dissipative models should not be dismissed too lightly, since it 
raises other severe computational problems, e.g. degrades time accuracy of transient solutions and 
inhibits their convergence to stady states. 

Taking the steady state limit wk + 0 (2 + l), 

v - 1  u+ + 1, x -  +- 
v +  1' 

reveals that K +  is the physically consistent mode while K- is the spurious one and is of saw-tooth 
character since I v 1 I 1 for stability. 

Let t E R; then w = wR +iw, E C is complex and (4) can be separated into its real and imaginary 
parts 

e-"Ik sin (wRk)=v sin (@I), e-u'k COS (URk)=l  + V 2  [COS (@I)- 11. (8) 

Eliminating w, in (8) yields 
v sin ( t h )  tan (aR k) = 

1 + v2 [cos ( (h) -  11 ' (9) 

In Figure 1, w,k and wRk are plotted against t h  for different values of v. For v 4 1, o , k = O  over the 
whole range of th .  In fact, dissipation is maximal when t h  = z, yielding the estimate 

q k s m a x  (w,k) = -In (1 - 2v2) N 2v2. (10) 
That is, for sufficiently small CFL numbers, dissipation is very weak and (9) may replace (4) as a 
dispersions relation. 

Group velocity 

The way dispersion errors manifest themselves in discrete wave propagation is best 
revealed by using the concept of group velocity, first introduced into discrete model analysis by 
Trefethen. lo* l4 Although strictly applicable in the non-dissipative case,' the analysis still yields 
good predictions if dissipation is weak. It can thus be justifiably used to analyse far-field wave 
propagation (see (10)). Implicit differentiation of (9) yields the approximate group velocity 

do, a COS (ch)  + UV2 [I - COS (th)] C,1:-= 
d5 (1 -v2[1 -cos ( 5 h ) ] } 2 + v 2  sin2 ( t h )  ' 

with the understanding that (1 1) is valid only for I v 1 < 1. Figure 2 shows C,/a as a function of t h  for 
various CFL numbers. We observe that in the extreme cases 

C,(@ = 0) =a, C,( <h = 71) = - a/( 1 - 2v2), 
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Figure 1. Imaginary and real parts of dispersion relation of equation (4) for various CFL numbers: (a) w,k and (b) o,k 
against ( h  

Figure 2. Approximate group velocity C,/a as a function of <h for various CFL numbers 
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suggesting that well-resolved smooth waves propagate at the physically correct speed while poorly 
resolved waves not only travel with the wrong speed but may also move in the wrong direction if 
v2 <+. The damping coefficient for the mode t h  = IL is, by (3 

Z(<h=n)=  1-2v2 

and tends to unity in the limit I v 14 1. Since at small CFL numbers waves propagate through fewer 
grid cells, the full implication of almost undamped waves moving in the physically wrong direction 
has to be assessed after a fixed time T rather than after a fixed number of time steps, N, i.e. in the 
double limit 1 v I -P 0, N + 00, such that Nk = T is fixed. Assuming h = 1 and a = 1, the accumulative 
damping effect is 

ZN= Z T / v =  (1 - 2vZ)T/V, e-2VTP> 1, 
l v l g 1  

implying that in the limit of small CFL numbers, spurious modes are not dissipated at all. This 
pathological behaviour is not unique to the LW scheme. It applies to a much wider class of 
dissipative schemes, including symmetric schemes of optimal accuracy and Runge-Kutta-type 
schemes.16 It is also known to exist with several non-dissipative models.'0-12i l 5  Upwind 
schemes, in that context, live up to their good reputation. Their inherent dissipation, although 
greatly reduced in the far field, is still sufficient to damp spurious modes.16 In particular, the 
accumulative damping coefficient in the dissipative upwind case is of the form 

ZN=(l-cv)T/V-e -cT 

l v l q l  

for some positive scheme-dependent constant c, i.e. the waves are still dissipated. 
Far-field conditions thus combine in a very unfavourable manner. On the one hand, an 

increasing number of modes tend to appear as high frequencies and induce large dispersion errors. 
On the other hand, local CFL numbers are small, dissipation diminishes and these spurious modes 
tend to persist. 

NUMERICAL EXPERIMENTS 

Governing equations 

speed and specific heat ratio respectively. Two systems of equations were tested. 
In the following, p, u, e, p, c and y represent the density, velocity, total energy, pressure, sound 

The ID unsteady Euler equations 

Using the ideal gas assumption, p is found from 

Linear combinations of the equations in (12) yield the characteristic equations' 

dp-pcdu=O on dx/dt=u-c, 

dp - c'dp = 0 on dx/dt = u, 

dp + pcdu = 0 on dx/dt = u + c, 
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which are later referred to as (u-c), (u) and (u+c) waves respectively. 

The 2 0  unsteady linearized Euler equations with axial symmetry 

The linearization is relative to a state of rest and p = 1, c = 1, with q = u cos 9 + u sin 9 the radial 
speed. Adding and subtracting the equations in (14) yields the characteristic equations 

dp-dq-J(q/r)dr=O on dr/dt= -1, 

dp+dq+l(q/r)dr=O on dr/dt= 1, (15) 

which are later referred to as (p - q)  and (p + q) waves respectively. 

Boundary conditions 

In all tests the far-field boundary is subsonic. Five BCs were tested. 

Specify pressure p = pm and extrapolate remaining quantities using outgoing characteristic 
equations. 
Specify zero incoming Riemann invariant and extrapolate remaining quantities using 
outgoing characteristic  equation^.^ 
Impose Roe’s conditions to treat the acoustic waves.4 
Overspecify-specify all quantities. 
Underspecify-zero-order extrapolate all quantities. 

make the following observations. 

(a) Various variants of (i) where p=pm is either explicitly specified or implicitly implied in the 
steady state limit are in wide use (e.g. in aeronautical flow c a l ~ u l a t i o n s ~ ~ ~ ~ ~ ) .  They are all 
motivated by the fact that in external aerodynamic flows the far-field pressure tends to its 
undisturbed value pm. However, pressure equals pm only at infinity itself, hence BC (i) is only 
approximate. By placing the boundaries at sufficiently large distance, it is hoped that p at the 
boundary is not far off pm and that the resulting inaccuracies will remain confined to the vicinity of 
the remote boundary. How far the boundary has to be moved before this effect becomes 
acceptable remains to be investigated numerically. 

(b) BCs (ii) are probably still the most widely used conditions in external aeronautical 
applications, either in their non-linear version (13) or in their linear version.” Being based on 1D 
arguments, they are expected to absorb best waves travelling normal to the boundary. Asymptotic 
expansions are required for waves travelling in other directions.’ 

(c) The gradient form of BCs (ii), (iii) and (v) implies that converged steady states are data- 
dependent, hence weak limits. A correction term is sometimes added to drive the steady state far- 
field pressure towards its correct asymptotic value.8 

(d) Both over- and underspecification of the boundary yield ill-posed problems. Under- 
specification is also formally unstable.18 They were included because in many flow calculations the 
boundary type is either not known a priori or it changes its type in a somewhat arbitrary manner 
during the transient phase of the calculation. For that reason, the boundary type is many times 
predetermined by a crude rule of thumb and over- and underspecifications may and do occur. It is 
interesting to see that in many circumstances they seem to perform no worse than other, better- 
posed BCs. 
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Numerical tests 

Test A (Figure 3). The governing equations are (12). A high pressure fed through the left-hand 
boundary (LHB) generates a right-moving moderate shock followed by a contact discontinuity 
propagating into a uniform initial state. The waves are expected to be absorbed by the RHB. The 
method of solution is Roe’s field decomposition with the LW scheme applied to each characteristic 
field.Ig No flux limiter is used. The test has been conducted on a uniform grid with k/h=0*5 and 
0.05 and on a mildly expanding grid with hj+ /h ,  = 1.05. An adaptation of the LW scheme to non- 
uniform grids, which is conservative and retains second-order accuracy on the above mesh, is 
given in Reference 20. Figure 3 shows the results obtained with BCs (ii). It is observed that small 
CFL numbers greatly reduce the absorption at the boundary. Very mild grid stretching causes 
wave propagation to become much more oscillatory and is sufficient to generate substantial 
boundary reflections of a saw-tooth character. These typical numerical reflections can be 
confirmed as (u) waves moving in the wrong direction, as admitted by the governing LW scheme. 
Since dissipation is weak, the reflected waves persist and corrupt the consistent physical solution. 
Similar results were observed with BCs (iii) and (v). 

Test B (Figure 4 ) .  The governing equations are (12). The grid stretches from the centre in both 
directions at a rate of 2%. Initial data correspond to a (u) wave and to a (u-c) wave respectively 
(see (1 3)). The initial wave, while propagating in the correct direction, gradually penetrates the 
coarse part of the grid. At some critical point the local wave number becomes such that the group 
velocity changes sign (for small CFL numbers this corresponds to a wavelength 1~4h). The wave 
reflects internally and propagates as a saw-tooth wave until it reaches the coarse region, where it 
reflects again and the low frequency is recovered. This trapped wave continues to bounce back and 
forth until it dissipates. In computations which march in time towards the steady state limit, 
internal reflections can be quite troublesome since they inhibit convergence to steady state. 

t 

X - 
x 

X 

t 

X 
__c 

Figure 3. ID Euler equations--evolution of density profiles with BC (ii): (a) k/h=0.5; (b) k/h=@05; (c) hj+, /h j=  1.05 
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X 

(a) (b) 

Figure 4. 1D Euler equations-internal reflections of simple waves on a 2% expanding grid, evolution of density profiles: 
(a) (u) wave; (b) (u-c) wave 

Trapped waves under non-dissipative schemes have been discussed and studied.", l 2  Analysis 
suggests and experiments confirm that in far-field conditions, symmetric dissipative schemes 
behave in much the same way. 

Test C (Figure 5 ) .  The governing equations are (14). Initial data correspond to a pressure 
hump q = 0, p = 1 + exp (- m2), which is expected to decay as it moves away from the origin. The 
free boundary solution is (p, q )  = (1,O). The method of solution is the same as in Test A with both 
flux- and source-like terms projected onto the characteristic fields. Figure 5 shows the evolution 
with time of pressure profiles with BC (i) applied at the RHB. Although p = pm is not far off the true 
pressure value at the boundary, this small discrepancy is sufficient to generate a weak reflected 
wave which bounces off the boundary and then focuses very strongly as it converges towards the 
origin, reaching intolerable error at the origin itself. The wave continues to bounce back and forth 
and requires a good number of 'round trips' before the solution converges. This is summarized 
Tables I and 11. In this example, owing to the symmetry of the problem, the focusing effect is 
particularly strong, becoming even more pronounced in a 3D set-up (Figure S(b)). A similar 
behaviour, albeit in a less pronounced manner, is expected to occur whenever p = p m  is specified. 
BCs (iiHv) completely absorb the wave, including (iv) which may be regarded as a stricter version 
of BC (i). 

Test D (Figure 6). The governing equations are (14). Initial conditions are a high-frequency 
wave packet 4 =0, p = 1 + exp [ - o(r - ro)2]  cos (m), which is expected to break into two wave 
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Figure 5. Partial reflection and strong focusing of a pressure wave with BC (i): (a) 2D and (b) 3D linearized Euler equations 
with radial symmetry 

Table I. Focusing of pressure wave against boundary distance 

No. of grid Signal amplitude Maximum reflected 
points near the RHB amplitude at the origin 

30 
50 

100 
200 

1.080 
1.051 
1-023 
1.013 

1.627 
1.500 
1.357 
1.247 

Table 11. Maximal reflected pressure amplitude at the origin for successive 
reflections 

No of grid First Second Third Fourth 
points focusing 

30 
50 

100 
200 

1.627 1.511 1.416 1.381 
1.500 1.396 1.320 1.276 
1.357 1.274 1.220 1.189 
1.247 1-185 1.142 - 
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(A> P PROFILES 

(C) PtQ PROFILE. 

(B> Q PRUFILES 

(0) P-Q PRCFIL ES 

Figure 6. Axisymmetric linearized Euler equations-high-frequency pressure wave reflected from an artificial boundary 
with BCs (ii) 
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packets of half the original strength moving in opposite directions. At first sight this is what 
appears to happen in Figure 6. Yet, simple wave plots reveal that both wave packets are moving 
'backwards'. The result is that the designated left-running ( p -  q )  wave reaches the RHB. The BCs 
are not designed to absorb waves of the opposite family and reflect the oncoming wave. While 
saw-tooth waves are easily recognizable as numerical noise, the reflected waves are smooth and 
much more harmful since they can no longer be distinguished from consistent solutions. BCs (iii) 
and (v) displayed similar behaviour. 

High-frequency BCs 

The direct numerical approach enables the design of BCs specially targeted at absorbing high 
frequencies. Here we follow a procedure suggested by Higdon.' Consider a general boundary 
operator of the form 

B(K-1, Z-1) G;,',=O, (16) 
where K and Z are the shift operators Ku; = u;+ and Z$ = u;' ' and B is a polynomial in these 
operators. If an admissible discrete wave of the form uy=Zll,~', is to be absorbed by (16), then 
B(ic;',Z;')=O. For the saw-tooth wave rc0=-1, and by (9, Z0=1-2v*=1 for IvI < l .  The 
desired boundary operator must have (K, Z ) = (  - 1 , l )  as a root. Not all such BCs are stable, but it 
can be shown that 

is stable.' We have adapted (17) to systems of equations in two ways: 

(a) To the Riemann invariants in (ii) neglecting the non-homogeneous term near the far-field 
boundary, 

B(K-', Z-') (p-q)3iJx=0, B(K Z- l )  (P+4Ei:x=0; (18) 

(19) 

(b) To Roe's BCs (iii) neglecting the non-homogeneous terms, 

B( K - 1, z- 1) plf:,', = 0, B(K-1, z-1) q;;ix=0. 

Since ( K ~ ,  Z,)=(l, 1) is bounded away from zero in (17), low frequencies cannot be absorbed by 
this procedure. This is confirmed in Figure 7, which was obtained by the boundary operators 
in (18). Similar results were obtained by (19). 

Combined BCs designed to absorb both low- and high-frequency waves are adapted to systems 
in the following way: 

BCs (20) are used in Figure 8 and prove effective for both ranges of frequency. The very weak 
reflections observed in Figure 8 are due to the sensitivity of BCs (20) to local wave numbers. 
Another high-frequency BC suggested in Reference 7 was combined with a standard first-order 
extrapolation procedure and adapted to systems as follows: 

( I + K - ' )  ( P - 4 ) ; 2 = 0 '  { I  - Z- [ V K  - + (1 - v)z]} ( p  + 4);;ix = 0. 
It gave satisfactory absorption of high frequencies but partly reflected low frequencies, probably 
because the first-order extrapolation procedure is too crude. 
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Figure 7. Axisymmetric linearized Euler equations: (a) absorption of a high-frequency wave and (b) reflection of a low- 
frequency pressure wave by BCs of equation (18) 

PARTIAL CURES 

The admittance of spurious modes by the LW scheme lies at the heart of the reflection mechanism, 
since it is often by the propagation of these modes that errors are carried back from the boundary 
into the computational domain and corrupt consistent solutions. The natural cure for this 
spurious behaviour is dissipation, which, unfortunately, tends to diminish in the far field. Any 
measure that re-establishes dissipation will act towards limiting the damage caused by this 
spurious behaviour. 

Artijicial viscosity 

An additional high-order correction term of the general form 

&(Ui”- 1 - 2ui” + uj”+ 

is sometimes added to (3) to stabilize the solution in violent flow regions, e.g. near shocks. The 
coefficient E is positive and made data-dependent, e.g. 

I uj+1-2uj+uj-1 I 
I U j + l  +2uj+uj- 1 I’ E=EO 

yielding a fourth-order correction term in smooth parts of the flow. Its effect on far-field flows is 
thus, by construction, very limited, since these flows are very smooth and very slowly varying. 
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Figure 8. Axisymmetric linearized Euler equations: absorption of (a) high- and (b) low-frequency pressure waves by 
combined low-high-frequency BCs (20) 

Local time stepping (LTS) 

In computations where steady state solutions are sought by means of integrating the time- 
dependent equations until convergence is reached, the accuracy of transient solutions is sometimes 
sacrificed for accelerated convergence properties. In an explicit time-marching algorithm the 
stability constraint on the allowable time step takes the form I kA/h 1s C, where d is the maximal 
signal speed and C is a scheme-dependent constant. A global restriction on k is usually placed by 
the smallest cells and is very wasteful on the large cells where information could be allowed to 
propagate a lot faster. The LTS approach makes k data- and grid-dependent in that it advances 
the solution by the maximum locally allowable time step kj, which varies from one grid cell to 
another. The transient phase of the solution loses its physical significance but convergence is 
accelerated. LTS increases local CFL numbers, hence partly compensates for the loss of inherent 
dissipation due to the coarseness of far-field grids. However, a local stability constraint is placed 
by the fastest local wave speed k j l  Chi/ 1 A,,, 1, and CFL numbers of the other waves, particularly 
in stiff systems, may still become very small and induce large dispersion errors. LTS, already 
limited to steady state calculations only, offers no genuine cure to the reflection problem discussed 
earlier and is of course altogether inapplicable to time-accurate calculations. 

Upwinding 

Finally, we mention very briefly that using upwind algorithms may get round the difficulties 
arising from the admittance of spurious modes. Although upwind models, just like symmetric 
ones, tend to become non-dissipative in the far field, they still maintain sufficient dissipation levels 
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to damp spurious modes over relatively short length scales.16 This should come as no complete 
surprise, since upwind schemes are known for their heavy inherent damping. Precisely this 
property makes them unsuitable for certain classes of problems where the observed signals are 
already very weak. Another drawback is that upwind schemes are more expensive since they 
require simple wave decomposition to ensure stability. 

CONCLUDING REMARKS 

We have presented a thorough numerical study of reflections from artificial far-field boundaries 
and exposed the key numerical parameters upon which absorption level depends. The study 
concentrated on dissipative models and an LW-type scheme was used as a prototype. The 
emphasis was on systems where it is the combination of interior scheme and all boundary 
procedures that determines the absorption efficiency. The numerical tests followed theoretical 
analysis which suggested that in the far field, local wave numbers are high and induce large 
dispersion errors. At the same time, local CFL numbers are small and the inherent dissipation of 
the scheme tends to vanish, allowing reflected spurious modes to persist and corrupt consistent’ 
physical solutions. Although shown only for the LW scheme, this last result is more general and 
applies to a much wider class of symmetric dissipative schemes.16 We have presented a variety of 
examples where strong reflections occur at artificial boundaries, even in 1D and quasi-1D set-ups, 
cases where theory predicts best results. The conditions required to expose far-field reflections 
were nowhere as severe as one may encounter in practical calculations. For example, the rate of 
grid expansion in exterior aeronautical calculations is a lot greater than 5% and the resulting far- 
field CFL numbers, particularly in time-accurate calculations, are a lot smaller than the ones used 
in this study, both of which tend to enhance the reflection mechanism discussed in this work. We 
have shown internal reflections due to mildly expanding grids and demonstrated strong focusing 
of asymptotic errors generated at the artificial boundaries. We followed suggestions in References 
5 and 7 and designed combined low-high-frequency boundary operators which improved the 
absorption of both frequency ranges. Finally, we have briefly discussed partial cures, primarily by 
pointing out their theoretically limited potential and consequently their incapability of offering 
genuine cures. 
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